348
Cerința
Pentru un număr natural nenul n, să se determine numărul de submulțimi nevide ale mulțimii {1, 2,..., n} cu proprietatea că oricare două elemente dintr-o submulțime au diferența în modul strict mai mare decât 1. Pentru că acest număr poate fi foarte mare, se va determina modulo 777013.
Date de intrare
Programul citește de la tastatură numărul n.
Date de ieșire
Programul va afișa pe ecran numărul acestor submulțimi, modulo 777013.
Restricții și precizări
1 ≤ n ≤ 100.000
Exemplu
Intrare
5
Ieșire
12
Explicație
Cele 12 submulțimi sunt: {1}, {2}, {3}, {4}, {5}, {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,3,5}.
#include <bits/stdc++.h>
using namespace std;
#define mod 777013
int n , s[100001];
int main()
{
cin >> n;
s[1] = 1 , s[2] = 2;
for(int i = 2 ; i <= n ; i++)
s[i] = ((s[i - 1] + s[i - 2]) + 1) % mod;
cout << s[n];
}
Comentarii